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Directed particle diffusion under ‘‘burnt bridges’’ conditions
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We study random walks on a one-dimensional lattice that contains weak connections, so-called ‘‘brid
Each time the walker crosses the bridge from the left or attempts to cross it from the right, the bridge m
destroyed with probabilityp; this restricts the particle’s motion and directs it. Our model, which incorpora
asymmetric aspects in an otherwise symmetric hopping mechanism, is very akin to ‘‘Brownian ratchets’
to front propagation in autocatalyticA1B→2A reactions. The analysis of the model and Monte Carlo sim
lations show that for largep the velocity of the directed motion is extremely sensitive to the distribution
bridges, whereas for smallp the velocity can be understood based on a mean-field analysis. The single-pa
model advanced by us here allows an almost quantitative understanding of the front’s position in theA1B
→2A many-particle reaction.
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Models based on particle’s diffusion in one-dimension
systems that lack mirror symmetry have attracted much
tention in the last years. Such essentially one-particle mo
include ‘‘Brownian ratchets’’@1–3#, ‘‘thermal ratchets’’~an
extensive literature on this subject is partly reviewed in R
@4#!, and several other models with strongly asymmetric tr
sition rates@5,6#; they are relevant for the description o
many biological and chemical processes and are also o
terest in general thermodynamical contexts~see, e.g.,@7#!.
On the other hand, much attention was paid to the fro
propagation problem, say as in the simpleA1B→2A auto-
catalytic reaction, see Refs.@9–11#. Such reactions show~es-
pecially in d51) many peculiarities connected with th
discrete nature of the system@12–27#. As we will show,
some aspects of such many-particle problems can also
reproduced by the one-particle model that we proceed to
cuss.

Here we put forward a one-dimensional model of direc
propagation based on random walks over a one-dimensi
semi-infinite chain extending to the right of the origin.
each realization of the process we have a single walker
performs at regular time intervals steps to nearest-neigh
positions along the chain. Some of the links connecting ne
est neighbors are, however, prone to be destroyed by
walker. We will call such links ‘‘bridges’’ and a destroye
link a ‘‘burnt bridge.’’ The bridge is burnt with probabilityp
if the random walker crosses it from left to right, or if
attempts to cross it from right to left. In any case, if t
bridge is burnt the walker stays right of it and cannot cros
back anymore; by this the walker gets to be separated f
the left part of the chain. Initially we have a concentrationc
of intact bridges. Att50 the walker starts at the origin an
moves in random walk fashion. In Fig. 1 we sketch o
model, in which the random walker is shown as an op
circle, the dots represent the chain’s sites, and the bridge
indicated by thin lines; a burnt bridge carries a vertical b
In this figure, two bridges are burnt out. Such bridges hin
leftward motion creating an overall drift to the right; w
denote the drift velocity byv, and study its dependence onc
and onp.
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Special cases of our burnt-bridges model~BBM! appear
in several recent contexts that treat rectifying Brownian m
tion. The casep51 reproduces the Brownian ratchet mod
of Refs.@1–3#, which depicts closely several kinds of intra
cellular processes. In Refs.@2,3# a small particle~so-called
Brownian motor! moves diffusively along a one-dimension
~1D! track on which barriers are located. The barriers
asymmetrically: they are totally transparent for rightwa
steps and totally reflecting~impenetrable! for leftward steps.
The motor performs, thus, a random walk in a system c
taining a number of sites with asymmetric transition rates
similar situation is also encountered in hopping lattice mo
els with asymmetric transitions@5,6# and in resistor-diode
networks~cf. Ref. @8#!. Furthermore, our BBM for generalp
resembles to a large extent situations found in networks c
taining imperfect rectifiers@2# and is related to asymmetri
hopping models in which backward rates are small but n
zero. The new aspect introduced by our BBM is that throu
the burning of bridges the system acquires a memory, wh
renders the overall process non-Markovian. A realization
such a situation is encountered in biological systems of ga
channels, see e.g.,@28#, where a channel~like the bridges
here! can be irreversibly blocked after the passage of an i

A particularly close connection exists between BBM a
front propagation in autocatalytic reactions, exemplified, s
by A1B→2A. In a mean-field picture front propagation
described by a quadratic Fisher equation@9,10# that is, how-
ever, as shown both analytically and by Monte Carlo sim
lations@12–27# quite deficient in low dimensions (d51 and
d52), the reason being that in low dimensions the reacti
are very sensitive to particle correlations and fluctuatio
@29,30#. As discussed in Refs.@16,23,26# the velocity at
which A-cluster expands is determined by the form of t
front, ‘‘leading edge.’’ We show now that BBM can repro

FIG. 1. The 1D propagation scheme. The open circle repres
the random walker, the dots are the lattice sites. The bridges
depicted by thin links, the burnt bridges are marked by vertical b
©2001 The American Physical Society02-1
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duce the dynamics of the front’s position in 1D quite
closely; this is a theoretically very important finding, since
shows that autocatalytic reactions display features very a
to the rectification of Brownian motion.

We recall now that in modeling theA1B→2A reaction
one lets particlesA andB react with probabilityq when they
meet on the same site. In standard fashion one starts
reaction by placing oneA particle at the origin of a semi
infinite chain, on which otherwise onlyB’s are found. The
position of the front is given by that of the rightmostA
particle~which plays the role of a marker!. Since the marker
is always the rightmostA, the otherA’s are a left boundary
for it. Thus, the motion of the marker to the right is free~it
may be modulated by reaction acts!, whereas its motion to
the left is restricted by mobile obstacles~the otherA’s!. The
front’s velocity is given byv5 x̄/ t̄ ~see Ref.@16#!, wherex̄ is
a typical distance from the site at which the last reaction
taken place andt̄ is the typical elapsed time between su
reactions. The BBM presented above is a simplified vers
of this picture; in it all particles with the exception of th
marker ~the walker! are frozen, fact that reverts the man
body problem to a one-walker scheme.

We now address the study of our BBM and highlight
behavior through Monte Carlo simulations. We use a
lattice of lengthL530 000 ~which is sufficient for 200 000
time steps, i.e., walker’s moves! and impose a reflecting
boundary condition at the origin. For the positioning of t
bridges we consider two alternatives:~i! random distribution
and~ii ! regular, equidistant positions. The obtained propa
tion velocities are shown in Fig. 2 forc50.1 as a function of
Ap. Case~i! is represented by triangles and case~ii ! by dia-
monds. One sees that for smallp, p!1, both models behave
similarly and thatv depends almost linearly onAp, which is
the mean-field result, see Eq.~15! below. For largerp devia-
tions from the mean-field case are evident, and the mo
start to behave differently, indicating that the fluctuations
the interbridge distances become important. In Fig. 2 we a

FIG. 2. The propagation velocityv is shown as a function o
Ap, wherep is the probability of burning a bridge. The triangles a
the results of our simulations for randomly distributed bridges,
diamonds those for regularly distributed~equidistant! bridges. The
circles display the results of Monte Carlo simulations of theA1B
→2A reaction. See text for details.
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present~through thick open circles! the results of Monte
Carlo simulations for theA1B→2A reaction, Ref.@16#.
Note that in the wholep -range investigated, case~i! ~BBM
with randomly distributed bridges! reproduces theA1B
→2A reaction results closely.

We now discuss the asymptotic behavior of the BBM
the case of very high (p.1) and very low (p!1), reaction
probabilities. Forp.1, a bridge burns practically at ever
crossing event. As a consequence one has a renewal s
tion: the walker takes the newly burnt bridge as its new o
gin. In the segment comprised between a left, burnt brid
and a right, intact one, the random walk motion correspo
to diffusion with a reflecting boundary condition at the le
and an absorbing boundary condition at the right.

Let us first concentrate on the case when the bridges
equidistant, and separated by a distancel 5c21. In this case
one has evidentlyx̄5 l , so that our only task will be to evalu
ate t̄ . In our caset̄ is the first-passage time throughl and can
be evaluated through the probability that the walker rema
in the interval,c(t)5*0

l C(x,t)dx, where the joint probabil-
ity density C(x,t) to find a walker at pointx at time t is
given by the solution of the diffusion equation

]C

]t
5D

d2C

]x2
, ~1!

under the boundary conditionsC8(x,t)50 at x50 and
C(x,t)50 at x5 l , where the initial condition isC(x,0)
5d(10). The mean sojourn time of a walker in this interv
is well known, namely,t̄ 5 l 2/2D, so that the front’s velocity,

v̄5 l / t̄ , is @2#

v̄ reg52D/ l 52cD. ~2!

On the other hand, in the case of randomly distribu
bridges we must averaget̄ over the distribution of distance
l between the bridges; taking the distribution to be Hertz
we havep( l )5cexp(2cl), from which t̄ 5 l 2/D and

v̄ rand5D/ l 5cD ~3!

follow. One may note the difference of a factor of 2 betwe
Eqs. ~2! and ~3!; this shows that the walker’s velocity i
strongly influenced by fluctuations in the interbridge d
tances, a fact that has its conterpart in the front propaga
problem, both in discrete@27# and also in continuous system
@11#. In connection with the Brownian rectifier this mean
that a disordered distribution of barriers leads to a consid
ably lower drift velocity when compared to that found whe
the same number of barriers is equidistantly distributed. N
that Eqs.~2! and ~3! neglect the existence of an underlyin
lattice and are exact only in the limitc→0. Usingp51 and
c50.1 in Fig. 2 we are still distant from a quantitative agre
ment. On the other hand, for even smallerc values the results
of the simulations tend towards the values given by Eqs.~2!
and ~3!; namely we find numerically forc50.1, 0.05, and
0.025 that v/cD51.17, 1.07, and 1.04 in case~i! and
v/2cD51.22, 1.15, and 1.05 in case~ii !.
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We now turn to the casep!1. Again, the mean-drift
velocity is given by the mean distance between two conse
tively burnt bridges and by the mean time between th
events. After burning a bridge, the overall process is
newed; the walker restarts its motion at the leftmost poin
an interval, with a reflecting boundary condition there. O
the other hand, for smallp, bridges have a small probabilit
to burn when crossed, and thus the mean walker’s displ
ment between two renewals is much larger thanc21, the
mean distance between bridges. To approximate the situa
we use here a separation of scales: a burning event wil
pictured as areaction of the walker with the bridge; the
walker will disappear, burning the bridge: Then a ne
walker will be created just to the right of the burnt bridg
Given thatp is small we can now assume the bridges to b
part of a continuousreactingmedium.

The probabilityF(x,t) to find the nonreacted walker a
point x at timet is now governed by the continuous reactio
diffusion equation

]F

]t
5D

d2F

]x2
2kF. ~4!

The boundary conditions areF8(0,t)50 and F(`,t)→0,
and the initial condition isF(x,0)5d(10). The solution of
Eq. ~4! is a decaying ‘‘half Gaussian,’’

F~x,t !5
1

ApDt
expS 2

x2

4Dt Dexp~2kt!. ~5!

Using this equation we find for the mean-traveled distan

x̄5E
0

`E
0

`

xF~x,t !dxdt5D1/2k23/2 ~6!

and for the mean lifetime between events

t̄ 5E
0

`E
0

`

tF~x,t !dxdt5k21. ~7!

According, now, to our coarse-grained model, the mean
locity of the walker is thenv5 x̄/ t̄ 5D1/2k1/2. It remains to
evaluatek. A simple consideration leads to the form

k}pc. ~8!

In the following we show that a more accurate approxim
tion suggests that

k52pc. ~9!

We do this by supposing that the overall coarse-grained c
centrationF does not change considerably on the scall
5c21, the typical distance between bridges.

We now consider the evolution of the fine-grained s
vival probability D(x,t) of the walker between two trap
situated at6 l /2, from which F(x,t) follows by averaging
over a spatial domain that is small compared tox̄, but large
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compared tol. The change inD(x,t) is governed inside
@2 l /2,l /2# by the diffusion equation

]D

]t
5D

]2D

]x2
, ~10!

to be solved with respect to the ‘‘gray sphere’’~mixed!
boundary condition atx56 l /2,

j 52D
]D

]x
5pD~ l /2!, ~11!

and a similar relation atx52 l /2 ~one may note that the
reaction probabilityp has the dimension of an inverse tim
since it is the probability to react on contactper time step!.
Solving Eq. ~10! through the variable separationD(x,t)
5X(x)T(t) gives the solution in the formD(x,t)
5(nbncos(anx)exp(2lnt) with ln5Dan

2 . The boundary
condition gives rise to an equation determiningan : Thean’s
are the~discrete! solutions of the transcendental equation

a52
p

D
cotS al

2 D . ~12!

The lowest mode, which determines the overall decay
given by the smallest nonzero solution of Eq.~12!. For p
small one can take cot(al/2).2/al and obtains

a252p/Dl , ~13!

from which

k5l52p/ l 52pc ~14!

follows @as claimed above, Eq.~9!#. In this case

v5D1/2k1/25A2Dpc. ~15!

Hence Eq.~8! and following lead to a linear dependence ofv
on p1/2, behavior which is clearly supported by Fig. 2. Fu
thermore, for smallp ~as was to be theoretically expecte!
the results of the numerical simulations show that the wa
er’s drift velocity is the same for regularly and for random
distributed bridges.

We now compare the findings of the BBM to theA1B
→2A problem. Forp large, the front velocity in the auto
catalytic reaction behaves similarly to the walker’s veloc
in case~i!, BBM with randomly distributed bridges, Eq.~3!.
The lowest orderc dependence in these two models is t
same, but the corrections of higher order inc differ. For
small p, the velocity of the front in theA1B→2A problem
is slightly larger than the one in the BBM. This fact can
traced back to the fact that in the reaction problem the eff
tive diffusion coefficient is larger thanD @16#.

Let us summarize our findings. We introduced a sim
non-Markovian model, the BBM, in which a walker ma
destroy with probabilityp bridges that it crosses from left t
right or attempts to cross from right to left. We monitore
through Monte Carlo simulations the mean-drift velocityv
of the walker as a function ofp. For small values ofp we
2-3
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find that the mean-field result (v;Ap) holds, and that this
result does not depend on the spatial distribution~regular or
random! of the bridges. At larger values ofp deviations from
the mean-field result appear. Moreover, at fixedc the value
of v is twice larger for a regular than for a random brid
placement. Comparison of the BBM results to those of
h,

.

.

01110
e

A1B→2A reaction shows that the BBM reproduces t
A1B→2A findings satisfactorily over the entirep range.
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