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Directed patrticle diffusion under “burnt bridges” conditions
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We study random walks on a one-dimensional lattice that contains weak connections, so-called “bridges.”
Each time the walker crosses the bridge from the left or attempts to cross it from the right, the bridge may be
destroyed with probability; this restricts the particle’s motion and directs it. Our model, which incorporates
asymmetric aspects in an otherwise symmetric hopping mechanism, is very akin to “Brownian ratchets” and
to front propagation in autocatalytis+B— 2A reactions. The analysis of the model and Monte Carlo simu-
lations show that for large the velocity of the directed motion is extremely sensitive to the distribution of
bridges, whereas for smallthe velocity can be understood based on a mean-field analysis. The single-particle
model advanced by us here allows an almost quantitative understanding of the front’s positiorAin Bhe
— 2A many-particle reaction.
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Models based on particle’s diffusion in one-dimensional Special cases of our burnt-bridges mod@BM) appear
systems that lack mirror symmetry have attracted much atin several recent contexts that treat rectifying Brownian mo-
tention in the last years. Such essentially one-particle modekion. The casgp=1 reproduces the Brownian ratchet model
include “Brownian ratchets'{1-3], “thermal ratchets”(an  of Refs.[1-3], which depicts closely several kinds of intra-
extensive literature on this subject is partly reviewed in Refcellular processes. In Reff2,3] a small particle(so-called
[4]), and several other models with strongly asymmetric tranBrownian motoy moves diffusively along a one-dimensional
sition rates[5,6]; they are relevant for the description of (1D) track on which barriers are located. The barriers act
many biological and chemical processes and are also of i@Symmetrically: they are totally transparent for rightward
terest in general thermodynamical contettse, e.g.[7]). steps and totally reflectingmpenetrablgfor Ieftward steps.
On the other hand, much attention was paid to the front:rhe_ motor performs,_thus, a random W"?llk In a_;ystem con-
propagation problem, say as in the simple B— 2A auto- taining a number_ of sites with asymmetric transition rates. A
catalytic reaction, see Ref@—11]. Such reactions sho{es- S|m|lqr situation Is ‘."‘ISO engquntered In hpppmg 'at“c‘? mod-

: . . . els with asymmetric transitiong5,6] and in resistor-diode
pecially in d=1) many peculiarities connected with the

. . networks(cf. Ref.[8]). Furthermore, our BBM for general
discrete nature of the systefl2-27. As we will show, resembles to a large extent situations found in networks con-

some aspects of such many-particle problems can also B&ining imperfect rectifier$2] and is related to asymmetric
reproduced by the one-particle model that we proceed to d'sﬁopping models in which backward rates are small but non-
Ccuss. _ _ _ zero. The new aspect introduced by our BBM is that through
Here we put forward a one-dimensional model of directecne burning of bridges the system acquires a memory, which
propagation based on random walks over a one-dimensiongénders the overall process non-Markovian. A realization of
semi-infinite chain extending to the right of the origin. In such a situation is encountered in biological systems of gated
each realization of the process we have a single walker thahannels, see e.g.28], where a channeflike the bridges
performs at regular time intervals steps to nearest-neighbdiere can be irreversibly blocked after the passage of an ion.
positions along the chain. Some of the links connecting near- A particularly close connection exists between BBM and
est neighbors are, however, prone to be destroyed by theont propagation in autocatalytic reactions, exemplified, say,
walker. We will call such links “bridges” and a destroyed by A+B—2A. In a mean-field picture front propagation is
link a “burnt bridge.” The bridge is burnt with probability ~ described by a quadratic Fisher equatiéri0] that is, how-
if the random walker crosses it from left to right, or if it €ver, as shown both analytically and by Monte Carlo simu-
attempts to cross it from right to left. In any case, if the lations[12—27 quite deficient in low dimensiongl& 1 and
bridge is burnt the walker stays right of it and cannot cross id=2), the reason being that in low dimensions the reactions
back anymore; by this the walker gets to be separated frorire very sensitive to particle correlations and fluctuations
the left part of the chain. Initially we have a concentraton [29,30. As discussed in Refd.16,23,2§ the velocity at
of intact bridges. At=0 the walker starts at the origin and which A-cluster expands is determined by the form of the
moves in random walk fashion. In Fig. 1 we sketch ourfront, “leading edge.” We show now that BBM can repro-
model, in which the random walker is shown as an open
circle, the dots represent the chain’s sites, and the bridges are m
indicated by thin lines; a burnt bridge carries a vertical bar. | ottt |0 S —t—t—t—e
In this figure, two bridges are burnt out. Such bridges hinder
leftward motion creating an overall drift to the right; we  FIG. 1. The 1D propagation scheme. The open circle represents
denote the drift velocity by, and study its dependence on  the random walker, the dots are the lattice sites. The bridges are
and onp. depicted by thin links, the burnt bridges are marked by vertical bars.
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present(through thick open circlgsthe results of Monte
Carlo simulations for theA+B—2A reaction, Ref.[16].
Note that in the whole -range investigated, casg (BBM
with randomly distributed bridgesreproduces theA+B
—2A reaction results closely.

We now discuss the asymptotic behavior of the BBM in
the case of very highp=1) and very low p<1), reaction
probabilities. Forp=1, a bridge burns practically at every
crossing event. As a consequence one has a renewal situa-
tion: the walker takes the newly burnt bridge as its new ori-
gin. In the segment comprised between a left, burnt bridge
and a right, intact one, the random walk motion corresponds
0.00 ‘ ‘ ‘ to diffusion with a reflecting boundary condition at the left
0.0 02 0'4\/? 0.6 08 10 and an absorbing boundary condition at the right.

Let us first concentrate on the case when the bridges are

FIG. 2. The propagation velocity is shown as a function of ~equidistant, and separated by a distahee . In this case
Vp, wherep is the probability of burning a bridge. The triangles are one has evidently=1, so that our only task will be to evalu-

the results of our simulations fqr r_andomly_ d_istribute_d bridges, thextat |n our casd is the first-passage time throuyand can
diamonds those for regularly distributéequidistant bridges. The o oy aluated through the probability that the walker remains
circles display he resuis of Mione Carlo simulations o#€B in the interval,y(t) = [, (x,t)dx, where the joint probabil-

ity density W(x,t) to find a walker at poink at timet is

duce the dynamics of the front's position inD1quite  given by the solution of the diffusion equation

closely; this is a theoretically very important finding, since it

shows that autocatalytic reactions display features very akin v D d*w 1

to the rectification of Brownian motion. gt g2 @
We recall now that in modeling th&+ B— 2A reaction

one lets particleé\ andB react with probabilityg when they  under the boundary condition®’(x,t)=0 at x=0 and

meet on the same site. In standard fashion one starts the(x,t)=0 at x=1, where the initial condition is¥(x,0)

reaction by placing oné\ particle at the origin of a semi- = §(+0). The mean sojourn time of a walker in this interval

infinite chain, on which otherwise onlg’s are found. The g yell known, namelyt_=I2/2D, so that the front's velocity,

position of the front is given by that of the rightmoét D=1/t is 2]

particle (which plays the role of a markerSince the marker '

is always the rightmosA, the otherA’s are a left boundary o —2D/l=2cD @)

for it. Thus, the motion of the marker to the right is frée reg '

may be modulated by reaction actshereas its motion 10 o the other hand, in the case of randomly distributed

the left is re_strlf:te(_i by mobllﬂbstacléﬂae otherA's). Ihe bridges we must averageover the distribution of distances
front's velocity is given by =x/t (see Ref[16]), wherexis | petween the bridges; taking the distribution to be Hertzian
a typical dlstanc_e'from the §|te at which t'he last reaction ha§ve havep(1) = cexp(cl), from whicht=12/D and
taken place and is the typical elapsed time between such
reactions. The BBM presented above is a simplified version Vrang=D/I=cD 3
of this picture; in it all particles with the exception of the
marker (the walkey are frozen, fact that reverts the many- follow. One may note the difference of a factor of 2 between
body problem to a one-walker scheme. Egs. (2) and (3); this shows that the walker’s velocity is
We now address the study of our BBM and highlight its strongly influenced by fluctuations in the interbridge dis-
behavior through Monte Carlo simulations. We use a 1Dtances, a fact that has its conterpart in the front propagation
lattice of lengthL =30 000 (which is sufficient for 200000 problem, both in discret27] and also in continuous systems
time steps, i.e., walker's movesind impose a reflecting [11]. In connection with the Brownian rectifier this means
boundary condition at the origin. For the positioning of thethat a disordered distribution of barriers leads to a consider-
bridges we consider two alternativés: random distribution  ably lower drift velocity when compared to that found when
and(ii) regular, equidistant positions. The obtained propagathe same number of barriers is equidistantly distributed. Note
tion velocities are shown in Fig. 2 fa=0.1 as a function of that Egs.(2) and (3) neglect the existence of an underlying
Jp. Caseli) is represented by triangles and c#sgby dia- lattice and are exact only in the limit—0. Usingp=1 and
monds. One sees that for smpJlp<<1, both models behave c¢=0.1in Fig. 2 we are still distant from a quantitative agree-
similarly and thaty depends almost linearly ofip, which is ~ ment. On the other hand, for even smatieralues the results
the mean-field result, see E@.5) below. For largep devia-  of the simulations tend towards the values given by EZ)s.
tions from the mean-field case are evident, and the modelnd (3); namely we find numerically foc=0.1, 0.05, and
start to behave differently, indicating that the fluctuations in0.025 thatv/cD=1.17, 1.07, and 1.04 in cas@) and
the interbridge distances become important. In Fig. 2 we also/2cD=1.22, 1.15, and 1.05 in cas#).

0.08 [

0.04
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We now turn to the cas@<1l. Again, the mean-drift compared tol. The change iMA(x,t) is governed inside
velocity is given by the mean distance between two consecy-—1/2,1/2] by the diffusion equation
tively burnt bridges and by the mean time between these
events. After burning a bridge, the overall process is re- dA 9?A
newed; the walker restarts its motion at the leftmost point of ot D PR (10
an interval, with a reflecting boundary condition there. On
the other hand, for smafi, bridges have a small probability 5 pe solved with respect to the “gray spherétixed
to burn when crossed, and thus the mean walker’s d'SplaC%'oundary condition at= *1/2,
ment between two renewals is much larger thart, the
mean distance between bridges. To approximate the situation ) d
we use here a separation of scales: a burning event will be j=—D——=pA(l/2), (13)
pictured as areaction of the walker with the bridge; the

walker will disappear, burning the bridge: Then a newand a similar relation ak=—1/2 (one may note that the
walker will be created just to the right of the burnt bridge. reaction probabilityp has the dimension of an inverse time,
Given thatp is small we can now assume the bridges to be a&ince it is the probability to react on contgmr time step
part of a continuouseactingmedium. Solving Eq. (10) through the variable separatiofi(x,t)
The prObabllltqu(X,t) to find the nonreacted walker at :X(X)T(t) gives the solution in the formA(X,t)
pointx at timet is now governed by the continuous reaction- =5, 1 cos@x)exp(—Aqt) with A\,=Da2. The boundary

diffusion equation condition gives rise to an equation determinamg Thea,’s
are the(discrete solutions of the transcendental equation

a=—=co
2

D

—=D— —kd. (4) o Jal
r( . (12)

The boundary conditions ar®’(0,t)=0 and ®(c°,t)—0, ) ) )

and the initial condition isb(x,0)= 5(+0). The solution of ~The lowest mode, which determines the overall decay is

Eq. (4) is a decaying “half Gaussian,” given by the smallest nonzero solution of H42). For p
small one can take catl{2)=2/al and obtains

1 2 2
d(x,t)= ——=ex ——)ex —kt). (5) a“=2p/Dl, (13
from which
Using this equation we find for the mean-traveled distance
k=\N=2p/l=2pc (19
;:f J x®(x,t)dxdt= DYk ~3?2 (6) follows [as claimed above, E49)]. In this case
0Jo
=DY%2=2Dpc. 15
and for the mean lifetime between events Y P 19
) Hence Eq(8) and following lead to a linear dependencevof
e fﬁjx@(x,t)dxdh K1 7y on p*’% behavior which is clearly supported by Fig. 2. Fur-
0o Jo thermore, for smalp (as was to be theoretically expected

the results of the numerical simulations show that the walk-
According, now, to our coarse-grained model, the mean veer’s drift velocity is the same for regularly and for randomly

locity of the walker is therv =x/t=DY%2 It remains to  distributed bridges.

evaluatek. A simple consideration leads to the form We now compare the findings of the BBM to tiAet B
—2A problem. Forp large, the front velocity in the auto-
kepc. (8) catalytic reaction behaves similarly to the walker’s velocity

in case(i), BBM with randomly distributed bridges, E3).

In the following we show that a more accurate approxima-The lowest ordec dependence in these two models is the
tion suggests that same, but the corrections of higher orderdrdiffer. For
small p, the velocity of the front in th&+B— 2A problem

k=2pc. (9 s slightly larger than the one in the BBM. This fact can be

] ) ) traced back to the fact that in the reaction problem the effec-
We do this by supposing that the overall coarse-grained coniye diffusion coefficient is larger thab [16].

centration® does not change considerably on the sdale | et us summarize our findings. We introduced a simple
=c™ %, the typical distance between bridges. _ non-Markovian model, the BBM, in which a walker may
~We now consider the evolution of the fine-grained sur-gestroy with probability bridges that it crosses from left to
vival probability A(x,t) of the walker between two traps right or attempts to cross from right to left. We monitored
situated at+1/2, from which ®(x,t) follows by averaging through Monte Carlo simulations the mean-drift veloaity
over a spatial domain that is small compareddut large  of the walker as a function gb. For small values op we
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find that the mean-field resulv ¢ \p) holds, and that this
result does not depend on the spatial distributi@gular or
random of the bridges. At larger values pfdeviations from
the mean-field result appear. Moreover, at fixethe value

PHYSICAL REVIEW E 64 011102
A+B—2A reaction shows that the BBM reproduces the
A+B—2A findings satisfactorily over the entiggrange.
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